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Abstract
A model of a long Josephson junction described by a nonlocal governing
fluxon equation, assuming Newtonian dissipation, is presented and studied
analytically as well as numerically. From a ballistic trial solution for a steadily
moving 2π phase difference kink based on an exact limiting form, observables
such as the lower critical field for the appearance of Josephson vortices, the
vortex magnetic field, the microscopic voltage across the tunnel layer, and
the macroscopic voltage across the junction itself are derived and assessed for
nonlocal effects. The current–voltage characteristic of the junction due to a
regular array of Josephson vortices moving uniformly along it predominantly
exhibits monostability when nonlocality is weak and dissipation high; however,
a transition to bistability and associated formation of filaments of different
current densities can occur when nonlocality is strong and dissipation low.

1. Introduction

A theoretical understanding of the electromagnetic properties of long Josephson junctions is
important in at least two respects. Firstly, such junctions are characterized by soliton behaviour
associated with the quantum of magnetic flux. Regarding superconducting electronics
applications, the fact that the fluxon is a remarkably stable entity which can be stored, steered,
manipulated and made to interact with devices other than those involving the respective
junctions themselves suggests exploiting it as the basic bit in processing digital information [1].
Thus, microstrips of superconducting materials support, e.g., the ballistic transfer of a voltage
pulse [2]; logic elements using long Josephson junctions offer the intriguing possibility to
use their highly nonlinear current–voltage characteristic for switching at ultrafast speeds [3].
Similar features apply to Josephson gates based on multijunction interferometer instruments,
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to junctions between thin superconducting films [4–6] and to sandwich structures, with the
superconducting films deposited on insulated, flat superconducting shields [3]. Secondly,
long Josephson junctions can play a model role in the physics of the solid state, since the
capability of bulk or thin film high-temperature superconductors to carry loss-free currents
is essentially limited by extended defects and by weak links between superconducting grains
which often reveal Josephson junction-like traits [7]. As an established fact, dissipation in real
inhomogeneous systems appears first due to the motion of weakly pinned Josephson vortices
along some easy channels between the grains where the superconductor order parameter
is reduced, rather than due to the motion of strongly pinned Abrikosov vortices inside the
grains [8–10]. This constitutes a resistive mechanism similar to that in weak-link networks
representative of granular superconducting sheets [11]. Whereas for conventional Josephson
junctions with their low critical current density, and hence with a Josephson penetration depth
by far surpassing the London penetration depth of the material bulk, a local electrodynamic
description may be adequate, for weak links such as low-angle grain boundaries in high-
quality specimens typified by a substantially increased critical current density, and hence by a
Josephson penetration depth which could be much smaller than the London penetration depth
of the material bulk, recourse to a nonlocal formulation must be made.

Previous studies of the electrodynamics of long Josephson junctions in the nonlocal regime,
with the electric and magnetic fields due to Josephson vortex excitations described on the basis
of the London and the Maxwell equations at hand,allowed for normal tunnel current dissipation
by adopting a field-independent, ohmic quasiparticle conductivity, and obtained approximate
solutions of the governing fluxon equation by considering vortex motion to be overdamped
[12–18]. The transmission of tunnel junctions, however, is not in general linear, and hence the
relation between the quasiparticle current density and the electric field does not always show an
ohmic sign [19]. In this paper, therefore, we call upon an alternative, quadratic current–field
dependence giving rise to Newtonian-type normal tunnel current dissipation [1]. Although
fluxon dynamics involving this kind of dissipation is never overdamped and thus precludes
simplifications analogous to those possible in the ohmic case, such a choice does have the
distinct asset of yielding an exact, closed-form solution of the underlying fluxon equation,
whatever the degree of dissipation, in the limit of locality, offering a convenient start for the
set up of an approximate solution when nonlocality applies.

Proceeding from a geometric and electrodynamic characterization of the long Josephson
junction addressed, in section 2 we briefly outline the derivation of the nonlocal fluxon equation
for the space- and time-dependent phase difference of the superconductor order parameter
across the tunnel layer of this junction, and provide relating expressions for observables
associated with Josephson vortex excitations. Referring to steady-state motion of a 2π phase
difference kink along the junction, with nonlocality present, in section 3 we establish a ballistic
trial solution based on the corresponding, exactly solvable local case. In addition to rendering
a complete analytic account, we also give useful limiting forms in the weakly and, respectively,
strongly nonlocal regime. By employing the trial solution so defined, in section 4 we estimate
electromagnetic properties due to single Josephson vortex excitations, viz the lower critical
field, the vortex magnetic field, the pulse of the microscopic voltage across the tunnel layer, and
the pulse of the macroscopic voltage across the junction itself. Moreover, we extend the present
analysis to considering steady-state motion of a regular array of (noninteracting) Josephson
vortices, allowing the current–voltage characteristic of the junction to be addressed as well.
Apart from furnishing complete analytic accounts for each selected property, we again note
limiting forms in the weakly and, respectively, strongly nonlocal regime. Finally, in section 5
we conclude by summarizing the results obtained and highlighting the implications of nonlocal
effects. Details of mathematical evaluations can be found in appendices A, B and C.
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2. Nonlocal fluxon equation

Let us consider an infinitely extended, one-dimensional Josephson junction made up of two
identical superconductor banks occupying the half-spaces −∞ < x � −d and d � x < ∞
with respect to a Cartesian system x, y, z and adjoining a nonmagnetic, normal metallic or
lossy dielectric tunnel layer of thickness 2d filling the space −d < x < d . Typified as basic
and characterized by the critical current density, jc, the junction is thought to be driven by a
distributed transport current of density jt < jc flowing along the (positive) x-direction; a mode
of operation realized, e.g., when both superconductor banks contain Abrikosov vortices in the
critical state [20] such that a z-dependent magnetic field along the y-direction obtains.

Adopting the classical model of superconductivity, the electric and magnetic fields due
to Josephson vortex excitations, E and H—coexisting with the impressed Abrikosov vortices
referred to above—in the superconductor regions are governed by the London equations [21]

E = µ0λ
2
L∇ × ∂H

∂ t
(1)

and

H = −λ2
L∇ × (∇ × H), (2)

where µ0 denotes the permeability of free space, λL is the London penetration depth, and t
means time. In the tunnel layer region, these fields obey the Maxwell equation

∇ × H = εrε0
∂E

∂ t
+ j, (3)

where εr indicates the relative permittivity of the tunnel layer,ε0 is the permittivity of free space,
and j stands for the density of the total tunnel current, reduced by the distributed transport
current. In the entire space, furthermore, these fields satisfy the Maxwell equations

∇ × E = −µ0
∂H

∂ t
(4)

and

∇ · E = 0 (5)

as well as

∇ · H = 0. (6)

The preceding equations are supplemented by the requirement of continuity of the components
of E and H at x = ±d , as well as by the condition that both fields and their spatial derivatives
vanish when x → ±∞ or, respectively, z → ±∞.

With the geometry of the junction addressed, we assume that E has nonzero components
Ex and Ez only, and hence that H has a nonzero component Hy only, depending, in general,
on x, z and t . However, owing to the parallel plate structure assumed here, for a junction of
half-thickness implied to be small compared to the characteristic electrodynamic lengths of
the problem at hand, Ex and Hy do not vary with x inside the tunnel layer region, and the only
nonvanishing component of the total current density is written as

jx(z, t) = �|Ex |Ex + jc sin ϕ(z, t). (7)

The first term herein specifies the density of the normal tunnel current adopting, for
mathematical convenience, a field-dependent, nonohmic quasiparticle conductivity with a
(positive) constant,� [1], and referring to experimental observations of this kind of dependence
in junctions with some homogeneously doped superconductor banks [19]; the second term
reflects the density of the Josephson supercurrent which, apart from the density of the critical
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current, is determined by the phase difference of the superconductor order parameter across
the tunnel layer, ϕ [3, 22]. From the definition of the corresponding microscopic voltage drop,
V = −2d Ex , and the Josephson equation [23]

V (z, t) = −
(

�0

2π

)
∂ϕ

∂ t
, (8)

where �0 denotes the quantum of magnetic flux, it appears that the component Ex in
equation (7), and hence the macroscopic voltage across the junction,

U(z, t) = −
∫ ∞

−∞
Ex(x, z, t) dx, (9)

including losses in the superconductor banks as well, are related to ∂ϕ/∂ t . Likewise,
equation (3) in conjunction with equation (7) shows that Hy is determined by ∂ϕ/∂z. These
field components—and allied electromagnetic quantities characteristic of Josephson vortex
excitations—can therefore be calculated, once the dependence of ϕ on z and t is known.

In order to establish a governing equation for ϕ, we assume, according to the supposition
stated before, that the half-thickness of the junction is much smaller than the London penetration
depth; a condition certainly applying to most cases of practical significance. Furthermore, we
introduce the normalized coordinates ξ = x/λJ, η = y/λJ, ζ = z/λJ and the normalized
quantity δ = d/λJ, with the Josephson penetration depth [3, 22]

λJ =
(

�0

4πµ0λL jc

)1/2

, (10)

as well as the normalized time τ = ωJt , with the Josephson plasma frequency [3, 22]

ωJ =
(

4πd jc
εrε0�0

)1/2

. (11)

Employing an approach detailed in previous work [12, 14–16],equation (3) under consideration
of equations (1) and (2) as well as (4)–(8) then yields the nonlocal fluxon equation in the tunnel
layer region,

∂2ϕ

∂τ 2
+

α

2

∣∣∣∣∂ϕ

∂τ

∣∣∣∣∂ϕ

∂τ
+ sin ϕ − γ = 1

πε

∫ ∞

−∞
dζ ′ K0(|ζ − ζ ′|/ε) ∂2ϕ

∂ζ ′2 , (12)

with the dimensionless damping constantα = ��0/4πdεrε0, the normalized transport current
density γ = jt/jc, the dimensionless nonlocality parameter ε = λL/λJ, and the modified
Bessel function of the second kind and order zero, K0. We note that, owing to the ansatz for
the density of the normal tunnel current in equation (7), the dissipative term associated with the
first time-derivative in equation (12) is of Newtonian form. The dynamics of this equation thus
shows that a distinction between oscillation and relaxation as in the case of a field-independent,
ohmic quasiparticle conductivity, facilitating theoretical investigations through neglect of the
second time-derivative in the overdamped regime, has no meaning here (cf [24, 25]). Hence,
irrespective of the magnitude of α, all time-derivatives in equation (12) must be retained.

By means of a solution of equation (12), with appropriate initial and boundary conditions
prescribed, the total electromagnetic energy associated with Josephson vortex excitations, per
unit length of the junction in the η-direction, can be expressed as (cf [12–18])

W = lim
γ→0

{
�0

2π
jcλJ

∫ ∞

−∞
dζ (1 − cos ϕ(ζ, τ ))

+
�2

0

16π3µ0λ
2
L

∫ ∞

−∞
dζ

(
∂ϕ

∂ζ

) ∫ ∞

−∞
dζ ′ K0(|ζ − ζ ′|/ε) ∂ϕ

∂ζ ′

}
. (13)
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The first term on the right-hand side of equation (13) represents the contribution of
the Josephson supercurrent and the second term that of the self-induced magnetic field.
Furthermore, the magnetic field component of Josephson vortex excitations, Hη, in the lower
and the upper superconductor region, −∞ < ξ � −δ and δ � ξ < ∞, respectively, can be
put as (cf [14])

Hη(ξ, ζ, τ ) = − �0

4π2µ0λ
2
L

∫ ∞

−∞
dζ ′ K0(((ξ ± δ)2 + (ζ − ζ ′)2)1/2/ε)

∂ϕ

∂ζ ′ . (14)

In the tunnel layer region, −δ < ξ < δ, itself, Hη is identical with the boundary values from
equation (14), adopted on the surfaces of the superconductor banks. According to equation (8),
the microscopic voltage across the tunnel layer follows from

V (ζ, τ ) = −
(

�0

2π

)
ωJ

∂ϕ

∂τ
, (15)

and the macroscopic voltage across the junction reads (cf [16])

U(ζ, τ ) = −
(

�0

4πε

)
ωJ

∫ ∞

−∞
dζ ′ exp(−|ζ − ζ ′|/ε)∂ϕ

∂τ
. (16)

3. Ballistic trial solution

Looking at steady-state vortex motion in the (positive) ζ -direction of the Josephson junction
of infinite extent, we seek a ballistic solution of equation (12) represented by a single travelling
2π phase difference kink, i.e. by a topological soliton, depending on the coordinateχ = ζ −uτ

alone, with slope dϕ/dχ > 0 throughout, assuming u is the kink velocity measured in units of
the Swihart velocity υ = λJωJ, the maximum velocity of electromagnetic wave propagation
along the junction [26]. Such a solution obeys the integro-differential equation for ϕ in
−∞ < χ < ∞,

u2

(
d2ϕ

dχ2
− α

2

∣∣∣∣ dϕ

dχ

∣∣∣∣ dϕ

dχ

)
+ sin ϕ − γ = 1

πε

∫ ∞

−∞
dχ ′ K0(|χ − χ ′|/ε) d2ϕ

dχ ′2
(17)

together with the boundary conditions

lim
χ→∞ ϕ(χ) − lim

χ→−∞ ϕ(χ) = 2π (18)

and

lim
χ→±∞

dϕ

dχ
= 0; (19)

it adopts equilibrium values determined by sin ϕ = γ and approached asymptotically as
χ → ±∞.

In the local limit, defined by formally letting jc → 0 in equation (10), and hence ε → 0,
the respective coordinate becomes χ0 = ζ − u0τ , and equation (17) reduces to the differential
equation for ϕ0 in −∞ < χ0 < ∞,

u2
0

(
d2ϕ0

dχ2
0

− α

2

∣∣∣∣dϕ0

dχ0

∣∣∣∣dϕ0

dχ0

)
+ sin ϕ0 − γ = d2ϕ0

dχ2
0

, (20)

the boundary conditions, equations (18) and (19), applying mutatis mutandis as well.
Equation (20) has an appropriate exact, closed-form solution which, apart from an unimportant
additive constant to χ0, can be put as

ϕ0(χ0) = 4 arctan(exp(χ0/c0)) + arcsin γ, (21)



S2720 H Rauh et al

with the dimensionless local kink half-width

c0 = (α/(α(1 − γ 2)1/2 + γ ))1/2 (22)

and the dimensionless local kink velocity

u0 = (γ /(α(1 − γ 2)1/2 + γ ))1/2 (23)

(cf [1]). Instructive traits of this solution appear from the behaviour of the latter two quantities:

(i) the kink propagates with maximum velocity for zero damping or for the largest transport
current, u0 → 1 if α → 0 when 0 < γ < 1 or if γ → 1 when α � 0; conversely, it comes
to a halt for zero transport current or for infinitely strong damping, u0 → 0 if γ → 0
when α > 0 or if α → ∞ when 0 � γ < 1;

(ii) the travelling kink contracts to zero half-width for zero damping, c0 → 0 if α → 0 when
0 < γ < 1, and assumes a damping-controlled half-width for the largest transport current,
c0 → α1/2 if γ → 1 when α � 0;

(iii) the static kink expands to unit half-width for zero transport current, c0 → 1 if γ → 0
when α > 0, and adopts a transport current-controlled half-width for infinitely strong
damping, c0 → 1/(1 − γ 2)1/4 if α → ∞ when 0 � γ < 1.

Reverting to the problem of fluxon propagation when nonlocality is present, we invoke an
approximate solution of equation (17) defined by

ϕ(χ) = 4 arctan(exp(χ/c)) + arcsin γ, (24)

with the dimensionless nonlocal kink half-width cand the dimensionless nonlocal kink velocity
u regarded as parameters to be defined such that the trial function, equation (24), which
fulfills the boundary conditions, equations (18) and (19), gratifies equation (17) in a weighted
averages sense and translates into the exact solution, equation (21), if ε → 0. Multiplication of
equation (17) by dϕ/dχ and integration over χ links contributions from terms of this equation
with even symmetry, yielding

αu2

2

∫ ∞

−∞
dχ

(
dϕ

dχ

)3

− γ

∫ ∞

−∞
dχ

(
dϕ

dχ

)
= 0; (25)

an expression which reflects the balance between power dissipation associated with the flow
of quasiparticles, and power supply effected by the driving transport current itself. When
substituting equation (24) into (25), using equation (A.1) and observing (18), we obtain, with
reference to equations (22) and (23), the conservation relation

u/c = u0/c0. (26)

From equation (26) it appears that u can be calculated, once c is known. Likewise,
multiplication of equation (17) by d2ϕ/dχ2 and integration over χ singles out contributions
from terms of this equation with odd symmetry, giving

u2
∫ ∞

−∞
dχ

(
d2ϕ

dχ2

)2

+
∫ ∞

−∞
dχ

(
d2ϕ

dχ2

)
sin ϕ(χ)

= 1

πε

∫ ∞

−∞
dχ

(
d2ϕ

dχ2

) ∫ ∞

−∞
dχ ′ K0(|χ − χ ′|/ε) d2ϕ

dχ ′2 ; (27)

an expression constituted by the displacement current, the Josephson current and, respectively,
the Josephson vortex magnetic field. When inserting equation (24) into (27) and exploiting
equations (A.2), (A.3) as well as (A.11), we get, using equations (22), (23) and (26), the
fixed-point relation

c = c0s1/2(c/ε), (28)
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where

s(c/ε) = 6π(c/ε)3
∞∑

n=1

(−1)nnS′
1,1(nπc/ε), (29)

in which S′
1,1 means the derivative with respect to the argument of the Lommel function of

indices one. From equation (28), finally, c can be determined by iteration using, e.g., the local
value c = c0 for ε = 0 as a start.

The nonlocal regime is upward bounded by the fact that the critical current density of
the Josephson junction must not exceed the depairing critical current density of the material
bulk, jc < jp, confining ε to the (finite) range 0 � ε < εmax. Formally letting jc → jp in
equation (10) yields the minimum value of the Josephson penetration depth,

λJ,min =
(

�0

4πµ0λL jp

)1/2

, (30)

and applying herein the estimate [21]

jp
∼= �0

5πµ0λ
3
L

κGL, (31)

with κGL denoting the Ginzburg–Landau parameter, renders the maximum value of the
nonlocality parameter,

εmax = λL/λJ,min
∼= κ

1/2
GL , (32)

whence εmax � 1 is seen to be typical of high-temperature superconductors.
Useful approximate representations of the nonlocal kink half-width and the nonlocal kink

velocity obtain when considering ε to be either small or large. Thus, since in the weakly
nonlocal regime, equation (29) with (A.13) yields

s(c/ε) = {1 − 7
10 (ε/c)2 + O((ε/c)4)}; 0 < ε � c, (33)

employing equation (33) in (28) admits

c = c0{1 − 7
20 (ε/c0)

2 + O((ε/c0)
4)}; 0 < ε � c0, (34)

and using equation (34) in (26) gives

u = u0{1 − 7
20 (ε/c0)

2 + O((ε/c0)
4)}; 0 < ε � c0. (35)

Conversely, since in the strongly nonlocal regime, equation (29) with (A.15) yields

s(c/ε) ∼= 4c/πε; c � ε < εmax, (36)

employing equation (36) in (28) admits

c ∼= (4/πε)c2
0; c0 � ε < εmax, (37)

and using equation (37) in (26) gives

u ∼= (4/πε)c0u0; c0 � ε < εmax. (38)

Figures 1 and 2 illustrate the variation of the kink half-width and the kink velocity with
the transport current density, calculated from equations (26) and (28), addressing various
degrees of nonlocality and dissipation. This reveals that, while increasing nonlocality reduces
the half-width of the kink, enlarged dissipation counteracts nonlocal effects, even causing a
transition from a monotonic to a nonmonotonic dependence on the transport current density to
occur. Whereas growing nonlocality also reduces the velocity of the kink, the interplay with
dissipation here is such that a transition from a monotonic to a nonmonotonic dependence on
the transport current density, subject to the degrees of nonlocality and dissipation, may or may
not occur. We shall return to this point in a different context later.
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Figure 1. Kink half-width, c, as a function of the normalized transport current density, γ , for
the nonlocality parameter ε = 0.1 (full curves), 1 (dashed curves), 10 (dotted curves), when the
damping constant (a) α = 0.1 and (b) α = 1.
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Figure 2. Kink velocity, u, as a function of the normalized transport current density, γ , for the
nonlocality parameter ε = 0.1 (full curves), 1 (dashed curves), 10 (dotted curves), when the
damping constant (a) α = 0.1 and (b) α = 1.

4. Electromagnetic properties

The ballistic trial solution, equation (24), describing steady-state propagation of a single phase
difference kink allows convenient determinations of physical observables characteristic of the
Josephson junction and its excitations. We consider the lower critical field, the vortex magnetic
field, the microscopic and the macroscopic junction voltage as examples of such quantities.

4.1. Lower critical field

The lower critical field, i.e. the magnetic field at which a Josephson vortex appears first in the
junction, ensues from the total electromagnetic energy associated with this kind of excitation,
viz Hc1 = W/�0 [21]. Following equation (13), it reads

Hc1 = lim
γ→0

{
jcλJ

2π

∫ ∞

−∞
dχ (1 − cos ϕ(χ))

+
�0

16π3µ0λ
2
L

∫ ∞

−∞
dχ

(
dϕ

dχ

) ∫ ∞

−∞
dχ ′ K0(|χ − χ ′|/ε) dϕ

dχ ′

}
. (39)
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Figure 3. Lower critical field, Hc1, as a function of the nonlocality parameter, ε.

Employing the results of equations (B.1) and (B.7) in (39) and observing (10), we find

Hc1 = �0

2π2µ0λ
2
L

{
εc − 2π

∞∑
n=1

(−1)nnS0,0(nπc/ε)

}
, (40)

where S0,0 denotes the Lommel function of indices zero. The kink half-width c herein is
governed by equation (28), with c0 = 1 according to the limit γ → 0 of equation (22), leaving
a dependence on ε alone. Useful approximate representations obtain when considering ε to
be either small or large. Thus, since in the weakly nonlocal regime, equation (40) with (B.9)
yields

Hc1 = �0

2π2µ0λ
2
L

{
εc + ε/c − 1

6
(ε/c)3 + O((ε/c)5)

}
; 0 < ε � c, (41)

employing equation (34) in (41) admits

Hc1 = �0

π2µ0λ
2
L

ε

{
1 − 1

12
ε2 + O(ε4)

}
; 0 < ε � c. (42)

Conversely, since in the strongly nonlocal regime, equation (40) with (B.11) yields

Hc1
∼= �0

2π2µ0λ
2
L

{
εc +

π

2
ln(ε/c)

}
; c � ε < εmax, (43)

exploiting equation (37) in (43) gives

Hc1
∼= �0

2πµ0λ
2
L

ln ε; c � ε < εmax. (44)

The variation of the lower critical field with the nonlocality parameter, calculated from
equation (40), is displayed in figure 3. A linear rise for weak nonlocality followed by a transition
towards a logarithmic increase for strong nonlocality can be clearly discerned. Suffice it to add
that, as ε has an upper bound of εmax, Josephson vortices will only exist below the maximum
critical field

Hc1,max
∼= �0

2πµ0λ
2
L

ln εmax; c � εmax, (45)

which, from equation (32), also admits

Hc1,max
∼= �0

4πµ0λ
2
L

ln κGL; c � κGL. (46)

This result agrees with the lower critical field for the first entry of Abrikosov vortices into the
superconductor bulk [21].
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4.2. Vortex magnetic field

Attending to equation (14), the magnetic field component of a Josephson vortex excitation,
Hη, in the lower and the upper superconductor region, −∞ < ξ � −δ and δ � ξ < ∞,
respectively, moving along the junction with constant velocity u takes the form

Hη(ξ, χ) = − �0

4π2µ0λ
2
L

∫ ∞

−∞
dχ ′ K0(((ξ ± δ)2 + (χ − χ ′)2)1/2/ε)

dϕ

dχ ′ , (47)

which, from equation (18), is seen to support a total of one quantum of magnetic flux. In
the tunnel layer region, −δ < ξ < δ, itself, Hη is identical with the boundary values from
equation (47), adopted on the surfaces of the superconductor banks. Useful approximate
representations obtain when considering ε to be either small or large. Thus, in the weakly
nonlocal regime, expanding the derivative in the integrand of equation (47) into a Taylor series
and interchanging the order of summation and integration yields

Hη(ξ, χ) = − �0

4π2µ0λ
2
L

∞∑
n=0

1

(2n)!

d2n

dχ2n

(
dϕ

dχ

) ∫ ∞

−∞
dχ ′ K0(((ξ ± δ)2 + χ ′2)1/2/ε)χ ′2n;

0 < ε � c. (48)

Performing the integration in equation (48) with the help of [27, 28] gives

Hη(ξ, χ) = − 1

(2π)1/2

(
�0

πcµ0λ
2
L

) ∞∑
n=0

2n + 1

(2n)!!
εn+1/2|ξ ± δ|n+1/2

× Kn+1/2(|ξ ± δ|/ε) d2n

dχ2n
sech(χ/c); 0 < ε � c, (49)

where Kn+1/2 denotes modified spherical Bessel functions of the third kind and order n + 1/2,
whence

Hη(ξ, χ) = − �0

2πµ0λ
2
L

(ε/c) exp(−|ξ ± δ|/ε) sech(χ/c)

{
1 − 3

2
(ε/c2)(|ξ ± δ| + ε)

× (2 sech2(χ/c) − 1) + O((ε/c2)2)

}
; 0 < ε � c, (50)

c and u herein being determined by the respective equations (34) and (35). In the strongly
nonlocal regime, on the other hand, approximating equation (47) by

Hη(ξ, χ) ∼= − �0

4π2µ0λ
2
L

K0(((ξ ± δ)2 + χ2)1/2/ε)

∫ ∞

−∞
dχ ′

(
dϕ

dχ ′

)
; c � ε < εmax (51)

and observing equation (18) yields

Hη(ξ, χ) ∼= − �0

2πµ0λ
2
L

K0(((ξ ± δ)2 + χ2)1/2/ε); c � ε < εmax, (52)

c and u herein being determined by the respective equations (37) and (38); a result which agrees
with the magnetic field component of an Abrikosov vortex excitation in the superconductor
bulk [21], understanding here the absence of a normal vortex core. Contour lines of the
magnetic field of a Josephson vortex excitation, derived from equation (47) for moderate
dissipation, a medium transport current density and two different degrees of nonlocality, are
displayed in figure 4, demonstrating a true Josephson character with their pronounced lenticular
shapes, when nonlocality is weak, and confirming the Abrikosov-like character with their
almost circular shapes, when nonlocality is strong.
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(b)(a)

Figure 4. Contour lines of the magnetic field of a single moving Josephson vortex, Hη, for
the damping constant α = 0.5 and the normalized transport current density γ = 0.5, when the
nonlocality parameter (a) ε = 0.1 and (b) ε = 10. The superconductor banks (dark shading), the
tunnel layer (light shading) and the moving Cartesian system ξ , η, χ are marked.

4.3. Microscopic voltage

Following equation (15), the microscopic voltage across the tunnel layer, caused by a single
Josephson vortex moving along the junction with constant velocity u according to equation (26)
with (22), (23) and (28), takes the form

V (χ) =
(

�0

2π

)
uωJ

dϕ

dχ
. (53)

By exploiting equation (26) with (22) and (23), equation (53) yields

V (χ) =
(

�0

π

)(
γ

α

)1/2

ωJ sech(χ/c), (54)

c herein being given by equation (28). Figure 5 shows the variation of the microscopic voltage
with the coordinate along the junction, calculated from equation (54) for a medium transport
current density, addressing various degrees of nonlocality and dissipation. It is obvious that,
while increasing nonlocality tends to contract the microscopic voltage pulse, augmenting
dissipation tends to spread this pulse and to reduce its height.

4.4. Macroscopic voltage

Attending to equation (16), the macroscopic voltage across the junction, caused by a single
Josephson vortex moving along the junction with constant velocity u according to equation (26)
with (22), (23) and (28), takes the form

U(χ) =
(

�0

4πε

)
uωJ

∫ ∞

−∞
dχ ′ exp(−|χ − χ ′|/ε) dϕ

dχ ′ . (55)

Useful approximate representations obtain when considering ε to be either small or large. Thus,
in the weakly nonlocal regime, expanding the derivative in the integrand of equation (55) into
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Figure 5. Microscopic voltage across the tunnel layer due to a single moving Josephson vortex, V ,
as a function of the normalized coordinate, χ , for the normalized transport current density γ = 0.5
and the nonlocality parameter ε = 0.1 (full curves), 1 (dashed curves), 10 (dotted curves), when
the damping constant (a) α = 0.1 and (b) α = 1.

a Taylor series and interchanging the order of summation and integration yields

U(χ) =
(

�0

4πε

)
uωJ

∞∑
n=0

1

(2n)!

d2n

dχ2n

(
dϕ

dχ

) ∫ ∞

−∞
dχ ′ exp(−|χ ′|/ε)χ ′2n; 0 < ε � c.

(56)

Performing the integration in equation (56) with the help of [28] and exploiting equation (26)
with (22) and (23) yields

U(χ) =
(

�0

π

)(
γ

α

)1/2

ωJ

∞∑
n=0

ε2n d2n

dχ2n
sech(χ/c); 0 < ε � c, (57)

that is

U(χ) =
(

�0

π

)(
γ

α

)1/2

ωJ sech(χ/c){1 − (ε/c)2(2 sech2(χ/c) − 1) + O((ε/c)4)};
0 < ε � c, (58)

c and u herein being given by equations (34) and (35), respectively; a result which, in the limit
ε → 0, reverts to the local form of equation (54). By contrast, in the strongly nonlocal regime,
approximating equation (55) by

U(χ) ∼=
(

�0

4πε

)
uωJ exp(−|χ |/ε)

∫ ∞

−∞
dχ ′

(
dϕ

dχ ′

)
; c � ε < εmax (59)

and observing equation (18) yields

U(χ) ∼=
(

�0

2ε

)
uωJ exp(−|χ |/ε); c � ε < εmax, (60)

c and u herein being determined by equations (37) and (38), respectively. Figure 6 illustrates
the variation of the macroscopic voltage with the coordinate along the junction calculated
from equation (55), again for a medium transport current density, addressing various degrees
of nonlocality and dissipation. Evidently, increasing nonlocality tends to broaden the
macroscopic voltage pulse, unlike the microscopic voltage pulse dealt with before, whereas
augmenting dissipation tends to spread the macroscopic voltage pulse and to reduce its height,
like the microscopic voltage pulse considered before.
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Figure 6. Macroscopic voltage across the junction due to a single moving Josephson vortex, U , as
a function of the normalized coordinate, χ , for the normalized transport current density γ = 0.5
and the nonlocality parameter ε = 0.1 (full curves), 1 (dashed curves), 10 (dotted curves), when
the damping constant (a) α = 0.1 and (b) α = 1.

The preceding analysis can be straightforwardly extended to a regular array of Josephson
vortices, having normalized nearest-neighbour spacing a � 2c such that interactions between
individual vortices are negligible, and moving uniformly with velocity u according to
equation (26) with (22), (23) and (28). The average macroscopic voltage across the junction
caused by this array—a directly measurable quantity—is defined by

〈U〉 =
∞∑

m=−∞

1

a

∫ a

0
dχ U(χ − ma). (61)

Substituting equation (55) into (61) gives

〈U〉 =
(

�0

4πaε

)
uωJ

∫ a

0
dχ

∞∑
m=−∞

∫ ∞

−∞
dχ ′ exp(−|χ − ma − χ ′|/ε) dϕ

dχ ′ . (62)

Employing the result, equation (C.6), in (62) yields the simple form

〈U〉 =
(

�0

a

)
uωJ; (63)

a proportionality to the velocity of the kink which, from its derivation, holds in the entire
nonlocal regime. Useful approximate representations obtain when considering ε to be either
small or large. Thus, in the weakly nonlocal regime, substituting equation (35) into (63) yields

〈U〉 =
(

�0

a

)
u0ωJ

{
1 − 7

20
(ε/c0)

2 + O((ε/c0)
4)

}
; 0 < ε � c0. (64)

Conversely, in the strongly nonlocal regime, substituting equation (38) into (63) gives

〈U〉 ∼=
(

4�0

πaε

)
c0u0ωJ; c0 � ε < εmax. (65)

Figure 7 shows the average macroscopic voltage as a function of the normalized transport
current density, i.e. the current–voltage characteristic of the Josephson junction at hand, based
on numerical evaluations of equation (63) in conjunction with (26) and (28), addressing various
degrees of dissipation and nonlocality. A general trait due to the interplay between the normal
tunnel current and the Josephson supercurrent is the decrease of the initial voltage change with
increasing dissipative loss. However, whereas the voltage itself rises monotonically with the
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Figure 7. Average macroscopic voltage across the junction due to a moving array of Josephson
vortices, 〈U〉, as a function of the normalized transport current density, γ , for (a) the damping
constant α = 0.1 (full curve), 0.5 (dashed curve), 1 (dotted curve), when the nonlocality parameter
ε = 0.1, and for (b) the damping constant α = 0.25 (full curve), 0.35 (dashed curve), 0.5 (dotted
curve), when the nonlocality parameter ε = 10.
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Figure 8. Stability chart for the current–voltage characteristic of the Josephson junction. The
regions of monostability and bistability are separated by the critical damping constant, α = αc,
subject to the nonlocality parameter, ε.

transport current density for the values of the damping constant used, when nonlocality is weak
(cf figure 7(a)), a nonmonotonic dependence subject to the values of the damping constant can
occur, when nonlocality is strong; the average macroscopic voltage then falls across that range
of the transport current density, where a negative differential resistance appears (cf figure 7(b)).

In experiments with a fixed voltage applied, rather than a uniform current impressed,
characteristics of the latter type are always associated with instabilities. Thus, while for all
points of the characteristic, monostability manifests itself at the highest dissipative loss, a
branch point with zero slope, 0, emerges at the reduced, critical dissipative loss which, for a
constant voltage maintained, splits into two stable points, 1 and 3, delineating the respective
normalized current densities, γ1 and γ3, and encompassing an unstable point, 2, upon further
reduction of the dissipative loss. This transition from monostability to bistability is not confined
to the degree of nonlocality adopted here; it can occur throughout the nonlocal regime, as may
easily be seen in figure 8. Recalling the phenomenon of current filamentation observed, e.g., in
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junction devices using some homogeneously doped semiconductors under external conditions
of the same kind [29], we therefore predict, when bistability exists, the formation of domains
carrying currents of the normalized densities γ1 and γ3, aligned parallel to the direction of the
transport current, for the Josephson junction too. The assumption of steady state requires the
velocities, u1 and u3, together with the nearest-neighbour spacings, a1 and a3, distinguishing
the array of Josephson vortices in the respective domains to adjust such that u1/a1 = u3/a3.
The overall widths of these domains, w1 and w3, in turn are controlled by the average density
of the current flowing along the filaments, jf = ((w1γ1 + w3γ3)/(w1 + w3)) jc. Clearly, a more
accurate analysis of current filamentation would have to take the current redistributions in the
superconductor banks self-consistently into account.

5. Conclusions

Nonlocal fluxon dynamics in a long Josephson junction with Newtonian dissipative loss has
been investigated both analytically and numerically. A ballistic trial solution of the underlying
fluxon equation in the form of a steadily moving 2π phase difference kink based on the
corresponding, exactly solvable local case has been set up and used to appraise nonlocal effects
exhibited by various observable quantities. The results demonstrate that, whereas increasing
nonlocality reduces the half-width of the kink and slows down its velocity of propagation, the
critical field for the first appearance of Josephson vortices inside the junction tends to the limit
at which Abrikosov vortices enter into the superconductor bulk. Accordingly, the contour lines
of the magnetic field of Josephson vortex excitations show pronounced lenticular shapes when
nonlocality is weak, but take on almost circular shapes when nonlocality is strong. Pulses
of the microscopic voltage across the tunnel layer contract, while pulses of the macroscopic
voltage across the junction itself broaden as a result of nonlocal effects. The current–voltage
characteristic of the junction due to steady-state motion of a regular array of (noninteracting)
Josephson vortices exhibits regions of monostability and bistability, depending on the extent of
dissipation, at any degree of nonlocality,current filamentation being predicted,when bistability
exists. Whereas in the region of bistability, and hence in the hysteretic mode, such junctions
could mainly be employed for logic circuits [30], in the region of monostability, and hence in
the nonhysteretic mode, they could predominantly be used for SQUIDs [31].

Appendix A. Evaluation of integrals related to the nonlocal fluxon equation

With the trial function, equation (24), the integrals [28]
∫ ∞

−∞
dχ

(
dϕ

dχ

)3

= 8

c3

∫ ∞

−∞
dχ sech3(χ/c) = 4π

c2
(A.1)

and ∫ ∞

−∞
dχ

(
d2ϕ

dχ2

)2

= 4

c4

∫ ∞

−∞
dχ sech2(χ/c) tanh2(χ/c) = 8

3c3
(A.2)

as well as∫ ∞

−∞
dχ

(
d2ϕ

dχ2

)
sin ϕ(χ) = 4

c2
(1 − γ 2)1/2

∫ ∞

−∞
dχ sech2(χ/c) tanh2(χ/c)

= 8

3c
(1 − γ 2)1/2 (A.3)
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hold; furthermore, from Parseval’s relation and the convolution theorem [32], the representation∫ ∞

−∞
dχ

(
d2ϕ

dχ2

) ∫ ∞

−∞
dχ ′ K0(|χ − χ ′|/ε) d2ϕ

dχ ′2 = 4

c4

∫ ∞

−∞
dχ sech(χ/c) tanh(χ/c)

×
∫ ∞

−∞
dχ ′ K0(|χ − χ ′|/ε) sech(χ ′/c) tanh(χ ′/c)

= 2

πc4

∫ ∞

−∞
dκ f ∗(κ)g(κ) f (κ); ε > 0, c > 0 (A.4)

applies, with Fourier transforms given by [28]

f (κ) =
∫ ∞

−∞
dχ sech(χ/c) tanh(χ/c)eiκχ = iπc2κ sech(πcκ/2) (A.5)

and

g(κ) =
∫ ∞

−∞
dχ K0(|χ |/ε)eiκχ = π

(κ2 + 1/ε2)1/2
. (A.6)

Using equations (A.5) and (A.6), the integral of the last equation (A.4) takes the form∫ ∞

−∞
dκ f ∗(κ)g(κ) f (κ) = 2π3c4

ε2

∫ ∞

0
dλ sinh2 λ sech2((πc/2ε) sinh λ), (A.7)

upon substituting εκ = sinh λ and reducing the range of integration. The integral on the right-
hand side of equation (A.7), which is readily amenable to efficient numerical evaluations, can
be formally expressed in terms of a special function, as will be shown.

Expansion of the hyperbolic secant into a binomial series of exponentials [28] gives

sech2(β sinh λ) = −4
∞∑

n=1

(−1)nn exp(−2nβ sinh λ); β > 0, λ > 0, (A.8)

and Lommel’s integrals [28] in conjunction with their recurrence relation [27] yield

S′
1,1(x) = −

∫ ∞

0
dλ sinh2 λ exp(−x sinh λ); x > 0, (A.9)

i.e. an integral representation of the derivative of the Lommel function of indices one.
Employing equations (A.8) and (A.9) imparts∫ ∞

0
dλ sinh2 λ sech2((πc/2ε) sinh λ) = 4

∞∑
n=1

(−1)nnS′
1,1(nπc/ε). (A.10)

Because of equations (A.7) and (A.10), equation (A.4) finally results in∫ ∞

−∞
dχ

(
d2ϕ

dχ2

) ∫ ∞

−∞
dχ ′ K0(|χ − χ ′|/ε) d2ϕ

dχ ′2 =
(

4π

ε

)2 ∞∑
n=1

(−1)nnS′
1,1(nπc/ε). (A.11)

Asymptotic expansion of the function S1,1 [27, 28] admits

S′
1,1(x) ∼ −2

{
1

x3
− 6

x5
+ O

(
1

x7

)}
; x � 1. (A.12)

Using equation (A.12) in (A.11) and summing up the respective series of expansion
coefficients [27] yields the approximate representation

∞∑
n=1

(−1)nnS′
1,1(nπc/ε) = 1

6π

{
(ε/c)3 − 7

10
(ε/c)5 + O((ε/c)7)

}
; 0 < ε � c. (A.13)
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Conversely, employing the form∫ ∞

0
dλ sinh2 λ sech2((πc/2ε) sinh λ) ∼= 8

3π2
(ε/c)2; c � ε < εmax (A.14)

in equation (A.10) yields the approximate representation
∞∑

n=1

(−1)nnS′
1,1(nπc/ε) ∼= 2

3π2
(ε/c)2; c � ε < εmax. (A.15)

Appendix B. Evaluation of integrals related to the lower critical field

With the trial function, equation (24), the limiting integral [28]

lim
γ→0

∫ ∞

−∞
dχ (1 − cos ϕ(χ)) = 2

∫ ∞

−∞
dχ sech2(χ/c) = 4c (B.1)

holds; furthermore, from Parseval’s relation and the convolution theorem [32], the
representation

lim
γ→0

∫ ∞

−∞
dχ

(
dϕ

dχ

) ∫ ∞

−∞
dχ ′ K0(|χ − χ ′|/ε) dϕ

dχ ′

= 4

c2

∫ ∞

−∞
dχ sech(χ/c)

∫ ∞

−∞
dχ ′ K0(|χ − χ ′|/ε) sech(χ ′/c)

= 2

πc2

∫ ∞

−∞
dκ h∗(κ)g(κ)h(κ); ε > 0, c > 0 (B.2)

applies, with Fourier transforms given by [28]

h(κ) =
∫ ∞

−∞
dχ sech(χ/c)eiκχ = πc sech(πcκ/2) (B.3)

and equation (A.6). Using equations (B.3) and (A.6), the integral of the last equation (B.2)
takes the form ∫ ∞

−∞
dκ h∗(κ)g(κ)h(κ) = 2π3c2

∫ ∞

0
dλ sech2((πc/2ε) sinh λ), (B.4)

upon substituting εκ = sinh λ and reducing the range of integration. The integral on the right-
hand side of equation (B.4), which is readily amenable to efficient numerical evaluations, can
be formally expressed in terms of a special function, as will be shown.

Employing the series expansion, equation (A.8), and the integral representation of the
Lommel function of indices zero [28]

S0,0(x) =
∫ ∞

0
dλ exp(−x sinh λ); x > 0 (B.5)

imparts ∫ ∞

0
dλ sech2((πc/2ε) sinh λ) = −4

∞∑
n=1

(−1)nnS0,0(nπc/ε). (B.6)

Because of equations (B.4) and (B.6), equation (B.2) finally results in

lim
γ→0

∫ ∞

−∞
dχ

(
dϕ

dχ

) ∫ ∞

−∞
dχ ′ K0(|χ − χ ′|/ε) dϕ

dχ ′ = −16π2
∞∑

n=1

(−1)nnS0,0(nπc/ε). (B.7)

Asymptotic expansion of the function S0,0 [27, 28] gives

S0,0(x) ∼
{

1

x
− 1

x3
+ O

(
1

x5

)}
; x � 1. (B.8)
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Using equation (B.8) in (B.7) and summing up the respective series of expansion
coefficients [28] yields the approximate representation

∞∑
n=1

(−1)nnS0,0(nπc/ε) = − 1

2π

{
ε/c − 1

6
(ε/c)3 + O((ε/c)5)

}
; 0 < ε � c. (B.9)

Conversely, employing the form
∫ ∞

0
dλ sech2((πc/2ε) sinh λ) ∼= ln(ε/c); c � ε < εmax (B.10)

in equation (B.6) yields the approximate representation

∞∑
n=1

(−1)nnS0,0(nπc/ε) ∼= − 1
4 ln(ε/c); c � ε < εmax. (B.11)

Appendix C. Evaluation of integrals related to the macroscopic voltage

With the trial function, equation (24), and the convolution theorem [32], the representation
∫ ∞

−∞
dχ ′ exp(−|χ − χ ′|/ε) dϕ

dχ ′ = 1

πc

∫ ∞

−∞
dκe(κ)h(κ)e−iκχ; ε > 0, c > 0 (C.1)

applies, with Fourier transforms given by [28]

e(κ) =
∫ ∞

−∞
dχ exp(−|χ |/ε)eiκχ = 2/ε

κ2 + 1/ε2
(C.2)

and equation (B.3). Using equations (C.2) and (B.3), the last integral of equation (C.1) takes
the form ∫ ∞

−∞
dκ e(κ)h(κ)e−iκχ = 2πc

∫ ∞

−∞
dλ

λ2 + 1
sech(πcλ/2ε) exp(−iλχ/ε), (C.3)

upon substituting εκ = λ. With equations (C.1) and (C.3), the representation

∫ a

0
dχ

∞∑
m=−∞

∫ ∞

−∞
dχ ′ exp(−|χ − ma − χ ′|/ε) dϕ

dχ ′

= 2
∫ ∞

−∞
dλ

λ2 + 1
sech(πcλ/2ε)

∫ a

0
dχ exp(−iλχ/ε)

∞∑
m=−∞

exp(iλma/ε) (C.4)

holds, upon reversing the order of summation and integration. Fourier series expansion of the
Dirac delta function [32] admits

∞∑
m=−∞

exp(iλma/ε) = (2πε/a)δ(λ), (C.5)

so that equation (C.4) finally results in

∫ a

0
dχ

∞∑
m=−∞

∫ ∞

−∞
dχ ′ exp(−|χ − ma − χ ′|/ε) dϕ

dχ ′ = 4πε. (C.6)
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